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Transient cavity growth in ceramics under 
compression 

K. S. CHAN, R. A. PAGE 
Southwest Research Institute, 6220 Culebra Road, PO Drawer 28510 San Antonio, 
Texas 78228- 0510, USA 

The transient cavity growth behaviour of liquid phase-sintered ceramics subject to 
compressive loads is examined. Three possible sources of transient behaviour are suggested, 
and their ranges of applicability evaluated. By considering the values of the characteristic time 
for individual transient modes, it has been determined that transient cavity growth in ceramics 
probably originates from transient grain-boundary sliding. Assuming that the creep-induced 
cavities nucleate and grow on grain boundaries that are parallel to the loading axis, a transient 
cavity growth model is developed on the basis that the local stress which drives cavity growth 
is induced by transient sliding of adjacent grain boundaries. Results of the proposed model are 
compared with small-angle neutron scattering measurements of a hot-pressed silicon carbide 
and a liquid phase-sintered alumina, both of which contain a continuous, amorphous grain- 
boundary phase. The different cavity growth behaviours observed in these ceramics are 
discussed in conjunction with transient grain-boundary sliding. 

1. I n t r o d u c t i o n  
The kinetics of cavity growth in a number of ceramics 
have been studied by Page and co-workers [1-5] 
using the small-angle neutron scattering (SANS) tech- 
nique. These efforts have shown that the volume, V, of 
an individual cavity at time, t, after nucleation can be 
expressed as [1-6] 

V = ~t~ (1) 

where r and 13 are empirical constants. Values of 13 
ranging from 0.0 to 0.62 have been observed. The 
SANS measurements thus indicate that cavity growth 
in ceramics subject to compression is generally a tran- 
sient process. The transient cavity growth behaviour 
of an AD99 alumina ceramic crept at 1150 ~ and 220 
MPa is illustrated in Fig. 1. In several other cases, the 
creep cavities were found to exhibit no apparent 
growth, as shown in Fig. 2 for the AD99 and Lucalox 
alumina. This condition of zero cavity growth, corres- 
ponding to 13 = 0, has been interpreted to mean that 
the cavities experienced a growth transient of short 
duration that was beyond the detection limit of the 
experimental measurements. 

The growth of cavities in ceramics under com- 
pressive loads was analysed by Chan et al. [-7] for 
steady-state conditions. Treating the constrained 
growth of cavities in a ceramic containing a continu- 
ous glassy grain-boundary phase, Chan et  al. envis- 
aged cavities growing on boundaries in response to a 
local boundary normal stress that arose due to grain 
boundary sliding; as depicted in Fig. 3a. The growth 
behaviour depicted by the dashed curve in Fig. 1 was 
calculated using this model by assuming steady-state 
grain-boundary sliding. From Fig. 1, it is obvious that 
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the model of Chan et al. [7], or any other steady-state 
cavity-growth model, would not be adequate for de- 
scribing the transient or zero growth behaviour ob- 
served in AD99 alumina and in other similar ceramics. 

The transient growth of cavities by diffusion along 
grain boundaries subjected to a remotely applied ten- 
sile load was previously studied by Raj [8] using a 
Fourier-series approach. Sliding of grain boundaries 
under transient conditions was also analysed. The 
results of Raj suggest that more than one form of 
transient is possible. The objective of this paper is to 
identify the relevant mechanism(s) responsible for the 
gz:owth transient observed in ceramics. The relevant 
mechanism will then be used to extend the model of 
Chart et al. [-7] to treat transient cavity growth in 
ceramics either with (Fig. 3a) or without (Fig. 3b) a 
continuous grain boundary amorphous phase. Al- 
though there is evidence which shows that the creep 
cavities are oblate spheroids [-7], only the growth of 
spheroidal cavities is to be considered. The proposed 
model will be compared with experimental results 
obtained by the SANS technique, and used to identify 
material parameters which influence conditions for 
transient growth, no growth, and possible shrinkage of 
creep cavities in ceramics subject to compressive 
loads. 

2. Origins of cavity growth transients 
Before presenting the transient cavity growth model, it 
is instructive to examine the possible origins of the 
cavity growth transient. It is worthwhile to note that 
transient cavity growth was observed in ceramics both 
with and without an amorphous grain boundary 

1651 



phase. Transient cavity growth is therefore not associ- 
ated with transient creep resulting from percolation or 
viscous flow of the grain boundary phase from bound- 
aries under compression to those under tension. In- 
stead, the cavity growth transient is thought to arise 
from stochastic grain-boundary sliding, as is continu- 
ous cavity nucleation [9]. This rationale is supported 
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Figure 1 Comparison of SANS measurements  of cavity vol- 
ume, Vc, with the steady-state calculation of Chan  et al. [7]. 
R o = 51.5nm; h 0 = 150nm; l = 100rim; ~ = 1 • 10-Ts -1. 

by a recent study [10] on creep of copper containing a 
liquid bismuth intergranular phase, which indicated 
that the creep strain associated with liquid-phase en- 
hanced creep resulted primarily from grain-boundary 
sliding, and only a small creep strain ( ~ 0.1%) res- 
ulted from percolation of the liquid phase. Further- 
more, a theoretical analysis [-11] has revealed that the 
transient tensile creep strain resulting from percola- 
tion is ~ 0.12f, wherefis  the volume fraction of the 
liquid phase. For most liquid-phase sintered ceramics, 
the volume fraction of the grain-boundary amorphous 
phase is approximately 1%, yielding a transient creep 
strain of the order of 0.1%. Based on these results, 
transient creep in ceramics containing a continuous 
grain,boundary amorphous phase can be expected to 

90 

80 

=~ 70 

- -  6 0  

50 
.2 
~ 4o 

~ 30 

,2, 20 

10 

AD991 1300~ 

AD99~ 1150~ C 

~ - -  Lucoloxl 1600~ C 

1 I I I I I i I I 1 

10 3 10 4 5.10 4 10 5 
Time Isl 

Figure 2 Increase in individual cavity radius with time [6]. 

J 
J 

O "  

Continuous [ ~ ~  
~176176 ph~ - ~  I ~ l~)~n I 

c 

D F 

) 

g- 

| 
o- n 

| 

O "  

Figure 3 The cavity growth model of Chan et al. [7] for ceramics in compression: (a) with a continuous grain-boundary amorphous  phase; (b) 
without a grain-boundary amorphous  phase 
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arise primarily from transient grain-boundary sliding 
and not from percolation. 

Grain-boundary sliding generally requires accom- 
modation by contiguous grains [12]. The accommo- 
dated flow processes can be grain-boundary diffusion 
in ceramics without a grain-boundary vitreous phase 
[8, 12], but a solution precipitation process [13, 14] in 
one with a continuous amorphous phase along grain 
boundaries. The rate-controlling step in the latter 
might be either the kinetics of solution and precipit- 
ation, or the transport of atoms from regions of high 
stress to regions of low stress [13, 14]. For diffusional 
creep by grain-boundary diffusion [12] and transport 
limited solution-precipitation creep [14], the creep 
rates can both be described [12, 15] by 

~DbhCY 
ec oc k T d 3  (2) 

where f2 is the atomic volume, D b is the diffusion 
coefficient, h is the grain boundary height, cy is the 
local normal stress, k is Boltzmann's constant, T is 
temperature, and d is the grain size. 

After nucleation of cavities by stochastic grain- 
boundary sliding, transient growth of these cavities 
can arise from three possible origins: (1) the transient 
grain boundary traction involved in the cavity nucle- 
ation process; (2)the transient normal traction that 
exists along the grain boundary between the nucle- 
ation event and the attainment of stress redistribution 
between the cavities; and (3) the transient tractions 
associated with grain boundary sliding transients. For 
all three cases, the characteristic time, to, is given by 
[8, 163 

32(1 - v Z ) L 3 k T  
t~ = rt3 E D b h ~  (3) 

where v is Poisson's ratio, E is Young's modulus, and 
L is the characteristic diffusion length. 

It is noted that Equation 3 was obtained for transi- 
ent grain-boundary sliding and cavity growth invol- 
ving diffusion along clean grain boundaries [8]. Be- 
cause of similar rate-controlling mechanisms and 
creep rate equations between diffusional creep by 
grain-boundary diffusion and the transport-limited 
solution precipitation creep, Equation 3 is considered 
to be applicable to creep of ceramics containing a 
continuous liquid phase along the grain boundary 
when the relationship [12] 

1 d 3 k T  
r 1 - (4) 

132 hDbfl 

T A B L E  I Charac te r i s t ic  t imes for stress re laxa t ion  at var ious  

mic ros t ruc tu ra l  features in AD99 a lumina  crept  at  1150 ~ 

Mic ros t ruc tu ra l  feature Size(m) Charac te r i s t ic  t ime (s) 

Ledge height  1 x 10 s 3 x 10-  ~ 
Cav i ty  spac ing  1 x 10 -7 3 x 10 -4  

Gra in  size 20 • 10 -6 3 x 103(0.75h) 
37 x 10 -6 2 x 104(4.7 h) 

The ca lcu la t ions  are based on mate r ia l  cons tan t s  f rom Fros t  
and  Ashby  [17]: f ~ = 4 . 2 x 1 0 - 2 9 m  3, h D b = 2 . 7 x l 0 - 2 a m 3 s  -1, 

E = 3 . 2 x 1 0 5 M P a a n d k =  1 . 3 8 x 1 0  2 3 j K  i .  

is invoked for relating the viscosity of the liquid phase 
to the grain-boundary diffusivity. 

The characteristic diffusion length for the stress 
transient associated with cavity nucleation at grain- 
boundary ledges is the ledge height, which is of the 
order of 10 nm. For conditions representative of the 
SANS measurements, this diffusion length leads to a 
characteristic time of approximately 10-7 s, as pre- 
sented in Table I. Obviously this short duration can- 
not possibly account for the cavity growth transient of 
5 h shown in Fig. 1. Thus the stress transient associ- 
ated with the nucleation event can be ruled out as a 
possible cause of the observed growth transients. The 
characteristic diffusion length for the stress transient 
associated with stress redistribution between a row of 
cavities is the cavity spacing, which is in the order of 
100 nm for the AD99 alumina [7]. The corresponding 
characteristic time is 10-4s (see Table I), which is 
also too small to account for the experimentally ob- 
served transients. The characteristic diffusion length 
for grain-boundary sliding is of the order of the grain 
size, however, which is 20-37 gm for the AD99 alum- 
ina. This relatively large diffusion length leads to a 
characteristic time ranging from 0.75 to 4.7 h, which is 
of the same order as the duration of the experimental 
transient. Based on these results, it is apparent that the 
experimentally observed growth transients are likely 
to originate from grain-boundary sliding transients. 
Furthermore, the transients associated with cavity 
nucleation and the relaxation of normal stress on the 
ligament between two cavities are of such short dura- 
tion that they can generally be ignored. 

3. The  t r a n s i e n t  c a v i t y  g r o w t h  model  
The growth of creep cavities in ceramics subject to 
compression has been analysed previously by Chan et 
al. [7]. Treating constrained cavity growth in ceramics 
containing a continuous glassy grain-boundary phase, 
Chan et al. envisaged cavities growing on boundaries 
oriented parallel to the applied normal compressive 
stress in response to the sliding of contiguous grain 
boundaries, as depicted in Fig. 3. Their analysis of 
growth under conditions of steady-state grain-bound- 
ary sliding shows that the cavity growth rate, /~, for 
spheroidal cavities is given by [7] 

1~ - h 2 G ( ~ ) [ c y ,  - 2ysK(1 - 0.9~2)] (5) 
8~qR 

with 

and 

= R / l  

G(~) = 2x/3 - 0"667r~2 (6) 
0 . 9 6 ~  2 - -  ln~ - 0 . 2 3 ~  4 - 0.72 

where R is the cavity radius, r I is the viscosity of the 
glassy phase, l is the cavity spacing, ?'s is the surface 
energy, and K is a constant related to the ratio of the 
grain boundary, surface, and interfacial energies. The 
average normal stress, c~,, on the vertical boundary is 
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related to the steady:state creep rate, k~, due to grain- 
boundary sliding [7] 

33r1~ 
an -- 2~ (7) 

which is substituted into Equation 5 to obtain 

1~ - h2G(~) F 33rlg~ 1 8nqR k 2To 2~'sK(1 - 0 . 9 ~  2) (8) 

relating the growth rate of cavities located along the 
vertical boundary BE to the strain rate associated with 
the sliding of contiguous grain boundaries (AB, BC, 
DE, and EF). If sliding along these grain boundaries is 
transient, the growth of cavities on boundary BE 
would generally not be described by Equation 8 be- 
cause it was derived for steady-state conditions only. 
On the other hand, the large difference between the 
characteristic time for the stress relaxation at the 
cavity ligament and the characteristic time for grain- 
boundary sliding suggests that a steady-state condi- 
tion would prevail at the cavity ligament long before it 
could be reached at adjacent grain boundaries. Thus a 
quasi steady-state stress distribution would be ex- 
pected to exist between the cavities even during transi- 
ent sliding. Under these circumstances, the transient 
cavity growth rate may be obtained by replacing the 
~ term in Equation 8 by the creep rate, ~tr, that 
accompanies transient grain-boundary sliding. 

The creep rate for grain boundaries undergoing 
transient sliding has been analysed by Raj using a 
Fourier series method [8]. The grain-boundary shapes 
considered in the analysis included triangular, hexa- 
gonal, and a combination of these. The results of this 
work, presented in Fig. 4, indicate that the transient 
and the steady-state creep rates are related by 

~tr/~ss = (t/tc) m (9) 

with the value of m lying between - 0.5 and - 0.6. 
Although Equation 9 has been developed for transient 
sliding of clean grain boundaries, which are accom- 
modated by diffusion, it is anticipated that the form of 
the expression is valid for sliding of grain boundaries 
containing a continuous amorphous phase, providing 
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Figure 4 Power-law fit of Raj's calculation [8] of transient creep 
rate, kt~ , due to grain-boundary sliding as a function of time normal- 
ized by the characteristic time to reach the steady-state creep rate, 
Css �9 
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that the appropriate value of tc is used. Despite the fact 
that a theoretical value of - 0 . 5  to - 0 . 6  has been 
obtained, it is recognized that the experimental value 
for m might vary with individual ceramics or alloys. 
Based on these assumptions, substituting Equation 9 
into the transient sliding equivalent of Equation 8 
leads to 

t~ - h2G(~) [33rl?~(t/tc)" 1 
8nnR L 2re 2%K(1 - -  0 .9~  2) 

which can be simplified to give 

(10) 

/~ _ 33RG(~) I~s(t/tc)," 4~ 1 
(11) 

when h = 2R and K = 1/R for spheroidal cavities are 
invoked, leading to 

4n 2 -- ~ (1/~ -- 0.9~) 

(12) 

and finally 

~ = f33~G(~)[~sst~r m 4re (%to" ] 
4 n  2 - -  ~ -  \ ql J 

x (1/~ - 0.9~)Jdz (13) 

with d~ = dt/tc as the governing equations for cavity 
growth under transient grain-boundary sliding. 

4. Effects of transient grain-boundary 
sliding on cavity growth 

The first term contained in the bracket of Equation 13 
is the transient creep rate which drives cavity growth, 
while the second term corresponds to the cavity 
sintering rate, ~, given by 

= ~ -  (1/~ -- 0.9~) (14) 

From Equations 12 and 14, it is evident that the cavity 
growth rate, ~, depends on the values of ~, ~, and ~tr- 
Since both ~ and ~ depend on ~, interactions of these 
quantities are expected. 

The growth behaviour of creep cavities subject to 
the influence of transient grain-boundary sliding has 
been examined by numerical integration of Equation 
13 using the simple Euler method. In these calcu- 
lations, the value of m was set at - 0.5, while the ratio 
~/stc/ql was set at 0.194. The initial value of ~, ~o was 
0.01, corresponding to an initial cavity radius of 1 nm 
for a cavity spacing of 100 nm. The transient cavity- 
growth model is assumed to apply when t > 0.01t~, 
which is considerably longer than the time required 
for the steady-state condition to occur at the ligament 
between cavities, but is much too short for the steady- 
state condition to occur at adjacent sliding grain 
boundaries. Thus, the initial condition is ~o = 0.01 at 
t = to = 0.01tc. This value of to corresponds to an 
initial stress concentration factor of 3.16, which is a 
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Figure 5 Calculated cavity radius, R, transient creep rate, k,~, and 
sintering rate, ~, as functions of time normalized by the character- 
istic time, t~, to attain the steady-state condition for g~tc = 2.46: 
(a) cavity radius normalized by cavity spacing, R/I; ~0 = 0.01; t o 
= 0.01; 7~tdql = 0.194; (b)/:t~t~ and ~t~. 

factor  of three to five lower than that  which can be 
achieved at a grain bounda ry  containing a small (e.g. 
101am) ledge. Based on the prescr ibed  values, the 
cavi ty-growth behaviour  was examined as a function 
of k~str by integrat ing Equa t ion  12, using a t ime incre- 
ment  of  0.0005 tr 

Fig. 5a shows the cavity radius normal ized by the 
cavity spacing, R/l, as a function of t ime normal ized 
by the characterist ic time, t/t~, for the case of ~ t ~  
= 2.46. Transient  growth  is evident in the regime 

where the normal ized t ime is less than  unity. The 
corresponding values of  gt~ and ~ are shown in Fig. 5b, 
which shows that  k~,to decreases with increasing t ime 
and reaches the s teady-state  value when t = to. In 
addition, ~t, is always greater  than the sintering rate, ~. 
Consequent ly  the cavity size increases at all times. 
When  ~sst~ is lowered to 2.455, as shown in Fig. 6, a 
growth transient  is observed initially, followed by an 
apparen t  zero growth region and subsequent ly  by a 
rapid growth  region. The  corresponding results for/~t, 
and ~ shown in Fig. 6b demons t ra te  that  zero cavity 
growth occurs in the region where ~ss approx imate ly  
equals ~. Subsequent  growth  after the apparen t  zero- 
growth  region is an indication that  gs~ is slightly larger 
than ~, ra ther  than  being identically equal. A true no- 
growth region is obta ined  when fisstr =2 .45432  
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Figure 6 Calculated cavity radius, R, transient creep rate, ~:t,., and 
sintering rate, ~, as functions of time normalized by the character- 
istic time, to, to attain the steady-state condition for +~t c = 2.455: 
(a) cavity radius normalized by cavity spacing, R/l; ~,0 = 0.01; t o 
= 0.01; 7stc/ql = 0.194. (b) ~t,~c and ~tc. Lowering of ~t~ leads to a 

region of apparent zero cavity growth. 

(Fig. 7) for which ~s equals ~ when t > t~. When  ~ is 
lowered still further to a value slightly less than ~, 
sintering occurs after an initial t ransient  growth 
period; this behaviour  is i l lustrated in Fig. 8. 

The results in Figs 5-8  demons t ra te  that  the pre- 
scribed value of the s teady-state  creep rate, fi~, plays a 
significant role in the cavity growth kinetics even in 
the transient  growth regime. This occurs because +s~ 
scales ~tr, and thus represents the min imum creep rate 
that  ~ must  exceed in order  to bring abou t  cavity 
shrinkage. The  influence of ~s on the cavity growth  
behaviour  is summar ized  in Fig. 9 which illustrates the 
presence of a critical value of fis~, ~ , ,  that  leads to a 
no-growth  behaviour .  The value of fiC~ is influenced by 
the viscosity and surface energy, and they are related 
by the expression 

q/~;cr 4n 
- -  ( 1 / ~  - -  0 . 9 ~ )  ( 1 5 )  

7s 33 

which is obta ined f rom Equa t ion  12 by setting ~ = 0. 
As illustrated in Fig. 10, cavities exhibit cont inuous  
growth  when ~ exceeds this critical value, but  shrink 
when the opposi te  is true. The calculated normal ized 
cavity size is presented against  normal ized time in 
Fig. 11. This shows that  the t ime to achieve a certain 
value of R/I increases with decreasing values of ~ t~. If  

1 6 5 5  
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Figure 7 Calcula ted  cavity radius,  R, t rans ient  creep rate, ~ t r ,  and  
s inter ing rate, g, as func t ions  of t ime normal ized  by the character-  
istic time, tc, to a t ta in  the s teady-s ta te  condi t ion  for k~,t~ = 2.45432: 
(a) cavity radius  normal ized  by cavity spacing,  R/l; {o = 0.01; t o 
= 0.01; y~tr = 0.01. (b) ~t,tr and  ~tr The  balance  between g~ and  

g leads to a t rue zero cavity g rowth  region. 
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Hgure 8 Calcula ted  cavity radius,  R, t ransient  creep rate, ~t r ,  and  
sinter ing rate, ~, as funct ions  of t ime normal ized  by the character-  
istic time, t~, to a t ta in  the s teady-s ta te  condi t ion for g~t~ = 2.453: 
(a) cavity radius  normal ized  by cavity spacing,  R/l ~o = 0.01; t o 
= 0.01; ?~t~/ql = 0.194. (b) Str te  and  gtr Reducing  ~tr to a value less 

than  ~ leads to cavity shr inkage.  

a specific value of R/l is taken as a failure criterion, the 
time to failure would increase with decreasing values 
of k,~to in a similar manner. 

5. Comparison of model and experiment 
The volumetric growth rate, ~ ' t r ,  of spheroidal cavities 
in the transient regime is 

Vtr = 4r~R21~ 

which becomes 

l~tr - 33R3G(~)(Str - -  S) (16) 
rt 

when combined with Equations 9, 11 and 14. A special 
case of Equation 16 ~s 

Vtr -- 33R3G(~) ~ss(t/tc) m (17) 

which prevails when g is negligible. Since the steady- 
state volumetric growth rate, Vs,, is given by [7] 

V , , -  33R3G(~)~" (18) 
11: 
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Figure 9 Influence of the s teady-s ta te  creep rate, kss , on  the cavity 
g rowth  kinetics. The  value of ~s m u s t  exceed a critical value, e~r 
( = 2.45432), in order  to a t ta in  con t i nuous  cavity growth.  Go = 0.01; 
t o = 0.01; ?st~/ql = 0.194. 

Equation 17 can be simplified to 

Vtr = I/ss ( t / r e )  rn (19) 

for representing the volumetric growth rate of creep 
cavities subject to transient grain-boundary sliding. 



T A  B L E I I S u m m a r y  of s teady-s ta te  creep rate  (~,,), cavi ty  vo lumet r ic  g rowth  rate  (V), and  cavi ty  nuc lea t ion  rate (ri) as a 

funct ion of t ime of creep, t, observed in ceramics  

Mate r ia l  T(~ Compress ive  g~(s - 1 ) l)'(cm 3 s - I ) h(Nuclei  cm - s S) 

s t ress (MPa)  

AD99 s 1150 220 1.25 x 10 s 1.60 x 10-17 t-o.77 5.90 x 101o t-o.81 
AD99 s 1300 48 1.12 • 10-  v 1.82 x 10-16 t-o.7o 6 .0•  109 t -0"77 

AD99 s 1300 26 4.16 • 10 - s  0 4.48 • 109 t -~ 
NC2033 1600 570 1,40 • 10 -7 2.25 • 10 -19 t -0"37 0 

NC2033 1600 605 2 .80•  10 -7 5 .66x  10 19t o.3B 0 

Luca lox  z 1600 140 2.10 x. 10 -6 0 3.13 • 106 
Luca lox  2 1600 140 8.10 x 10 7 0 3.13 • 106 
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Figure 11 Mode l  ca lcu la t ions  showing  the t ime to reach a cons tan t  

ra t io  of cavi ty  radius  to spacing,  R/l, increases  wi th  decreasing 

values of ksst c. ~,o = 0.01; t o = 0.01; y s t j q l  = 0.194. 

A detailed examination of Equation 17 reveals that 
the transient cavity growth rate should increase line- 
arly with the steady-state creep rate, primarily 
through Equation 9. A summary of the experimental 
creep rate and cavity volumetric growth rate for cer- 
amics studied by Page and co-workers [2, 3, 51 is 
presented in Table II. For AD99 alumina crept at 
1150 and 1300~ a tenfold increase in 12tr was ob- 
served when the steady-state creep rate was increased 
by approximately the same magnitude. Similarly, a 

twofold increase in 12tr was observed in NC203 at 
1600 ~ when k~s was increased by a factor of two. 

Another important observation from the results in 
Table II is that the cavity volumetric growth rate 12 
expressions are similar in form for ceramics both with 
(AD99) and without (NC203) a grain-boundary 
amorphous phase. This similarity in the 12 expression 
appears to support the contention that Equations 9 
and 19 can be used for describing, respectively, grain 
boundary sliding and cavity growth in ceramics with 
or without a glassy phase, providing that the appro- 
priate characteristic time, to, is used. 

A comparison of Equation 17 with experimental 
data from AD99 alumina and NC203 silicon carbide is 
shown in Fig. 12. The slope of the theoretical curve is 
-0 .57 ,  compared with the experimental values of 
- 0 . 3 8  and - 0 . 7 7  for NC203 silicon carbide and 

AD99 alumina, respectively. Despite the discrepancy, 
the qualitative agreement implies that the cavity 
growth transients observed in these ceramics originate 
directly from transient grain-boundary sliding. It is 
also instructive to note that Equation 19 is also applic- 
able for the normal stress transient located at the 
ligament between two cavities. This condition has 
been analysed by Raj [8] using the Fourier series 
approach. His results showed a similar time depend- 
ence to that shown in Fig. 12 and represented by 
Equation 19. The normal stress transient is, however, 
thought not to be the mechanism responsible for 
transient growth in these ceramics because its charac- 
teristic time is much too short, as indicated above. 
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The zero-growth behaviour observed in these two 
ceramics can also be explained on the basis of transi- 
ent grain-boundary sliding when Equation 15 is in- 
voked to account for sintering effects. A quantitative 
comparison between model and experiment is shown 
in Fig. 13. The viscosity parameter, q, has been com- 
puted on the basis of Equation 4, and diffusion data 
compiled by Frost and Ashby [17-1. For AD99 at 
1300~ hDb,~ l x l 0 - 2 ~  -1, d = 2 0 - 3 7 g m ,  
R -= 8.0 nm, and l ~ 700 n m .  For Lucalox at 1600 ~ 
h D u ~ 2 . 7 x 1 0 - 2 1 m 3 s  -1, d = 3 7 t a m ,  R = 6 2 n m ,  
and l ~ 700 nm. The surface energy, ~s, is taken to be 
1 Jm -2, and the values for is~ are given in Table II. 
The viscosity parameter depends on the grain size; as a 
result, a range of values for rlgsfl/% is given for AD99 
in Fig. 13. The comparison in this figure indicates fair 
agreement between theory and experiment. 

At first glance, the zero cavity growth condition 
achieved through dynamic equilibrium of Equation 12 
appeared to be rather difficult to obtain because a 
slight increase in the strain rate would lead to cavity 
growth, while a slight decrease would cause cavity 
sintering. However, a more detailed examination of 
the cavity growth process under constrained condi- 
tions suggested otherwise. In constrained cavitation, 
the local total strain rate, ~t, is given by 

8, = ~gbs + ~c + ~, + zg (20) 

where ~gb~ + ~r + k- + ~g are strain rates contributed 
by grain-boundary sliding, creep, cavity nucleation 
and growth, respectively. The initial values for gn and 
~g Were both zero prior to cavity nucleation and 
growth, but were of finite values after cavitation. Since 
the total strain rate for the cavitated region was con- 
trolled by the uncavitated surrounding matrix grains, 
any contribution to the local strain rate by cavity 
nucleation and growth in the cavitated region would 
lead to reductions in the amount of grain-boundary 

sliding and/or creep. A reduction in the grain-bound- 
ary sliding rate would slow or even arrest the growth 
of the cavities. The latter occurs when the cavity 
growth term intersected the sintering curve in a man- 
ner as shown in Fig. 7b. These cavities would not be 
sintered, however, because of continual grain-bound- 
ary sliding. A negative contribution by En or ~g due to 
sintering would lead to an increase in ~gb~; this would 
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lead to cavity growth and restore the cavities to their 
no-growth configuration. Under these circumstances, 
cavitation would occur by continuous nucleation of 
cavities which would not grow beyond a given size. 
This process would proceed until cavities are nu- 
cleated at neighbouring boundaries, and cavitation 
would then proceed in an unconstrained manner. This 
proposed cavitation process is consistent with the 
results shown in Table II, which indicates that cavity 
nucleation is the dominant mechanism when zero 
cavity growth is observed. 

6. Conclusions 
1. The transient cavity growth observed in ceramics 

under compressive loading is probably induced by 
transient grain-boundary sliding. 

2. Zero cavity growth prevails in ceramics under 
compression when the local tensile stress induced by 
grain-boundary sliding is balanced by the sintering 
term. The condition of zero cavity growth occurs at a 
critical value of the steady-state creep rate. 

3. There exists a critical value, ~r of the steady- 
state creep rate which must be exceeded in order for 
continuous cavity growth to occur. The value of ~r 
depends on grain-boundary viscosity, surface energy, 
cavity size and spacing. 
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