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Transient cavity growth in ceramics under

compression
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Texas 78228-0510, USA

The transient cavity growth behaviour of liquid phase-sintered ceramics subject to
compressive loads is examined. Three possible sources of transient behaviour are suggested,
and their ranges of applicability evaluated. By considering the values of the characteristic time
for individual transient modes, it has been determined that transient cavity growth in ceramics
probably originates from transient grain-boundary sliding. Assuming that the creep-induced
cavities nucleate and grow on grain boundaries that are parallel to the loading axis, a transient
cavity growth model is developed on the basis that the local stress which drives cavity growth
is induced by transient sliding of adjacent grain boundaries. Results of the proposed mode! are
compared with small-angle neutron scattering measurements of a hot-pressed silicon carbide
and a liguid phase-sintered alumina, both of which contain a continuous, amorphous grain-
boundary phase. The different cavity growth behaviours observed in these ceramics are
discussed in conjunction with transient grain-boundary sliding.

1. Introduction

The kinetics of cavity growth in a number of ceramics
have been studied by Page and co-workers [1-5]
using the small-angle neutron scattering (SANS) tech-
nique. These efforts have shown that the volume, V, of
an individual cavity at time, ¢, after nucleation can be
expressed as [1-6]

Vo= atb 1)

where o and B are empirical constants. Values of P
ranging from 0.0 to 0.62 have been observed. The
SANS measurements thus indicate that cavity growth
in ceramics subject to compression is generally a tran-
sient process. The transient cavity growth behaviour
of an AD99 alumina ceramic crept at 1150 °C and 220
MPa is illustrated in Fig. 1. In several other cases, the
creep cavities were found to exhibit no apparent
growth, as shown in Fig. 2 for the AD99 and Lucalox
alumina. This condition of zero cavity growth, corres-
ponding to = 0, has been interpreted to mean that
the cavities experienced a growth transient of short
duration that was beyond the detection limit of the
experimental measurements.

The growth of cavities in ceramics under com-
pressive loads was analysed by Chan et al. [7] for
steady-state conditions. Treating the constrained
growth of cavities in a ceramic containing a continu-
ous glassy grain-boundary phase, Chan et al. envis-
aged cavities growing on boundaries in response to a
local boundary normal stress that arose due to grain
boundary sliding; as depicted in Fig. 3a. The growth
behaviour depicted by the dashed curve in Fig. 1 was
calculated using this model by assuming steady-state
grain-boundary sliding. From Fig. 1, it is obvious that
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the model of Chan et al. [7], or any other steady-state
cavity-growth model, would not be adequate for de-
scribing the transient or zero growth behaviour ob-
served in AD99 alumina and in other similar ceramics.

The transient growth of cavities by diffusion along
grain boundaries subjected to a remotely applied ten-
sile load was previously studied by Raj [8] using a
Fourier-series approach. Sliding of grain boundaries
under transient conditions was also analysed. The
results of Raj suggest that more than one form of
transient is possible. The objective of this paper is to
identify the relevant mechanism(s) responsible for the
growth transient observed in ceramics. The relevant
mechanism will then be used to extend the model of
Chan et al. [7] to treat transient cavity growth in
ceramics either with (Fig. 3a) or without (Fig. 3b) a
continuous grain boundary amorphous phase. Al-
though there is evidence which shows that the creep
cavities are oblate spheroids [7], only the growth of
spheroidal cavities is to be considered. The proposed
model will be compared with experimental results
obtained by the SANS technique, and used to identify
material parameters which influence conditions for
transient growth, no growth, and possible shrinkage of
creep cavities in ceramics subject to compressive
loads.

2. Origins of cavity growth transients

Before presenting the transient cavity growth model, it
is instructive to examine the possible origins of the
cavity growth transient. It is worthwhile to note that
transient cavity growth was observed in ceramics both
with and without an amorphous grain boundary
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phase. Transient cavity growth is therefore not associ-
ated with transient creep resulting from percolation or
viscous flow of the grain boundary phase from bound-
aries under compression to those under tension. In-
stead, the cavity growth transient is thought to arise
from stochastic grain-boundary sliding, as is continu-
ous cavity nucleation [9]. This rationale is supported
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by a recent study [10] on creep of copper containing a
liquid bismuth intergranular phase, which indicated
that the creep strain associated with liquid-phase en-
hanced creep resulted primarily from grain-boundary
sliding, and only a small creep strain ( =~ 0.1%) res-
ulted from percolation of the liquid phase. Further-
more, a theoretical analysis [11] has revealed that the
transient tensile creep strain resulting from percola-
tion is = 0.12f, where f is the volume fraction of the
liquid phase. For most liquid-phase sintered ceramics,
the volume fraction of the grain-boundary amorphous
phase is approximatety 1%, yielding a transient creep
strain of the order of 0.1%. Based on these results,
transient creep in ceramics containing a continuous
grain-boundary amorphous phase can be expected to
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Figure 2 Increase in individual cavity radius with time [6].

a

Figure 3 The cavity growth model of Chan et al. [7] for ceramics in compression: (a) with a continuous grain-boundary amorphous phase; (b)

without a grain-boundary amorphous phase
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arise primarily from transient grain-boundary sliding
and not from percolation.

Grain-boundary sliding generally requires accom-
modation by contiguous grains [12]. The accommo-
dated flow processes can be grain-boundary diffusion
in ceramics without a grain-boundary vitreous phase
[8, 12], but a solution precipitation process [13, 14] in
one with a continuous amorphous phase along grain
boundaries. The rate-controlling step in the latter
might be either the kinetics of solution and precipit-
ation, or the transport of atoms from regions of high
stress to regions of low stress [13, 14]. For diffusional
creep by grain-boundary diffusion [12] and transport
limited solution—precipitation creep [14], the creep
rates can both be described [12, 15] by

QD ho

b T

2

where Q is the atomic volume, D, is the diffusion
coeflicient, h is the grain boundary height, o is the
local normal stress, k is Boltzmann’s constant, T is
temperature, and d is the grain size.

After nucleation of cavities by stochastic grain-
boundary sliding, transient growth of these cavities
can arise from three possible origins: (1) the transient
grain boundary traction involved in the cavity nucle-
ation process; (2) the transient normal traction that
exists along the grain boundary between the nucle-
ation event and the attainment of stress redistribution
between the cavities, and (3) the transient tractions
associated with grain boundary sliding transients. For
all three cases, the characteristic time, ¢, is given by
[8, 16]

2 3
[ = 32(13 vHL kT 3)
7° ED hQ
where v is Poisson’s ratio, E is Young’s modulus, and
L is the characteristic diffusion length.

It is noted that Equation 3 was obtained for transi-
ent grain-boundary sliding and cavity growth invol-
ving diffusion along clean grain boundaries [8]. Be-
cause of similar rate-controlling mechanisms and
creep rate equations between diffusional creep by
grain-boundary diffusion and the transport-limited
solution precipitation creep, Equation 3 is considered
to be applicable to creep of ceramics containing a
continuous liquid phase along the grain boundary
when the relationship [12]

1 d*kT

" =m0 @

TABLE I Characteristic times for stress relaxation at various
microstructural features in AD99 alumina crept at 1150 °C.

Microstructural feature Size(m) Characteristic time (s)

Ledge height 1x107%  3x1077

Cavity spacing 1x1077 3x107%

Grain size 20x107%  3x10%(0.75h)
37x107° 2x 10*(4.7h)

The calculations are based on material constants from Frost
and Ashby [17]: Q=42x10"2°m? kD, =27x10"21m3s™1,
E=32x10°MPaand k= 1.38x 10723 JK ¢,

is invoked for relating the viscosity of the liquid phase
to the grain-boundary diffusivity.

The characteristic diffusion length for the stress
transient associated with cavity nucleation at grain-
boundary ledges is the ledge height, which is of the
order of 10 nm. For conditions representative of the
SANS measurements, this diffusion length leads to a
characteristic time of approximately 1077 s, as pre-
sented in Table I. Obviously this short duration can-
not possibly account for the cavity growth transient of
5h shown in Fig. 1. Thus the stress transient associ-
ated with the nucleation event can be ruled out as a
possible cause of the observed growth transients. The
characteristic diffusion length for the stress transient
associated with stress redistribution between a row of
cavities is the cavity spacing, which is in the order of
100 nm for the AD99 alumina [7]. The corresponding
characteristic time is 107 *s (see Table I), which is
also too small to account for the experimentally ob-
served transients. The characteristic diffusion length
for grain-boundary sliding is of the order of the grain
size, however, which is 20-37 pm for the AD99 alum-
ina. This relatively large diffusion length leads to a
characteristic time ranging from 0.75 to 4.7 h, which is
of the same order as the duration of the experimental
transient. Based on these results, it is apparent that the
experimentally observed growth transients are likely
to originate from grain-boundary sliding transients.
Furthermore, the transients associated with cavity
nucleation and the relaxation of normal stress on the
ligament between two cavities are of such short dura-
tion that they can generally be ignored.

3. The transient cavity growth model
The growth of creep cavities in ceramics subject to
compression has been analysed previously by Chan et
al. [7]. Treating constrained cavity growth in ceramics
containing a continuous glassy grain-boundary phase,
Chan et al. envisaged cavities growing on boundaries
oriented parallel to the applied normal compressive
stress in response to the sliding of contiguous grain
boundaries, as depicted in Fig. 3. Their analysis of
growth under conditions of steady-state grain-bound-
ary sliding shows that the cavity growth rate, R, for
spheroidal cavities is given by [7]

h*G(&)
8ntnR

(o, — 2v.K(1 — 09E%)]  (5)

with
£ = R/l
and

2./3 — 0.667nt>
096E2 — InE — 0.23t% — 0.72

G = (6)
where R is the cavity radius, n is the viscosity of the
glassy phase, [ is the cavity spacing, v, is the surface
energy, and K is a constant related to the ratio of the
grain boundary, surface, and interfacial energies. The
average normal stress, 6,,, on the vertical boundary is
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related to the steady-state creep rate, &, due to grain-
boundary sliding [7]

33né
o, = Nésgs (7)
2n

which is substituted into Equation 5 to obtain

_ G [ 33ng,
~ 8mnR 2%

— 2v.K(1 — 0.952)] @)

relating the growth rate of cavities located along the
vertical boundary BE to the strain rate associated with
the sliding of contiguous grain boundaries (AB, BC,
DE, and EF). If sliding along these grain boundaries is
transient, the growth of cavities on boundary BE
would generally not be described by Equation 8 be-
cause it was derived for steady-state conditions only.
On the other hand, the large difference between the
characteristic time for the stress relaxation at the
cavity ligament and the characteristic time for grain-
boundary sliding suggests that a steady-state condi-
tion would prevail at the cavity ligament long before it
could be reached at adjacent grain boundaries. Thus a
quasi steady-state stress distribution would be ex-
pected to exist between the cavities even during transi-
ent sliding. Under these circumstances, the transient
cavity growth rate may be obtained by replacing the
&, term in Equation 8 by the creep rate, £,, that
accompanies transient grain-boundary sliding.

The creep rate for grain boundaries undergoing
transient sliding has been analysed by Raj using a
Fourier series method [8]. The grain-boundary shapes
considered in the analysis included triangular, hexa-
gonal, and a combination of these. The results of this
work, presented in Fig. 4, indicate that the transient
and the steady-state creep rates are related by

Enfbss = (/L) ©)

with the value of m lying between — 0.5 and — 0.6.
Although Equation 9 has been developed for transient
sliding of clean grain boundaries, which are accom-
modated by diffusion, it is anticipated that the form of
the expression is valid for sliding of grain boundaries
containing a continuous amorphous phase, providing
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Figure 4 Power-law fit of Raj’s calculation [8] of transient creep
rate, £, due to grain-boundary sliding as a function of time normal-
ized by the characteristic time to reach the steady-state creep rate,

e
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that the appropriate value of ¢, is used. Despite the fact
that a theoretical value of — 0.5 to — 0.6 has been
obtained, it is recognized that the experimental value
for m might vary with individual ceramics or alloys.
Based on these assumptions, substituting Equation 9
into the transient sliding equivalent of Equation 8
leads to

_ R2G(E) [ 33né,(t/r) ,
(10)
which can be simplified to give
. BRGE[, . 4n (v,
R = 5 [sss(t/tc) -5 <W> (15 — 0.9&)}
(11)

when h = 2R and K = 1/R for spheroidal cavities are
invoked, leading to

.G, . 4An (v,
(12)
and finally
_ O [3BEGE) . ., A4 (vt
E.: = jT I:SSSICT — § ( nl )
x (1/8 — 0-95)]dt (13)

with dt = dt/t, as the governing equations for cavity
growth under transient grain-boundary sliding.

4. Effects of transient grain-boundary
sliding on cavity growth

The first term contained in the bracket of Equation 13

is the transient creep rate which drives cavity growth,

while the second term corresponds to the cavity

sintering rate, s, given by

4 [y,

- 5 (nl> (1/6 — 098) (14)
From Equations 12 and 14, it is evident that the cavity
growth rate, &, depends on the values of £, §, and §,,.
Since both & and § depend on &, interactions of these
quantities are expected.

The growth behaviour of creep cavities subject to
the influence of transient grain-boundary sliding has
been examined by numerical integration of Equation
13 using the simple Euler method. In these calcu-
lations, the value of m was set at — 0.5, while the ratio
Y.t./nl was set at 0.194. The initial value of , £, was
0.01, corresponding to an initial cavity radius of 1 nm
for a cavity spacing of 100 nm. The transient cavity-
growth model is assumed to apply when ¢ > 0.01¢,,
which is considerably longer than the time required
for the steady-state condition to occur at the ligament
between cavities, but is much too short for the steady-
state condition to occur at adjacent sliding grain
boundaries. Thus, the initial condition is &, = 0.01 at
t =1ty =0.01¢,. This value of t, corresponds to an
initial stress concentration factor of 3.16, which is a
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Figure 5 Calculated cavity radius, R, transient creep rate, §&,, and
sintering rate, s, as functions of time normalized by the character-
istic time, t,, to attain the steady-state condition for &.t, = 2.46:

(a) cavity radius normalized by cavity spacing, R/l; &, = 0.01; ¢,
= 0.01; y,t,/m! = 0.194; (b) &t and sz,

factor of three to five lower than that which can be
achieved at a grain boundary containing a small (e.g.
10 um) ledge. Based on the prescribed values, the
cavity-growth behaviour was examined as a function
of &t by integrating Equation 12, using a time incre-
ment of 0.0005¢,.

Fig. 5a shows the cavity radius normalized by the
cavity spacing, R/I, as a function of time normalized
by the characteristic time, t/t., for the case of &z,
= 2.46. Transient growth is evident in the regime
where the normalized time is less than unity. The
corresponding values of €, and § are shown in Fig. 5b,
which shows that £,.¢, decreases with increasing time
and reaches the steady-state value when t =1¢.. In
addition, &, is always greater than the sintering rate, s.
Consequently the cavity size increases at all times.
When £t is lowered to 2.455, as shown in Fig. 6, a
growth transient is observed initially, followed by an
apparent zero growth region and subsequently by a
rapid growth region. The corresponding results for &,
and § shown in Fig. 6b demonstrate that zero cavity
growth occurs in the region where &, approximately
equals s. Subsequent growth after the apparent zero-
growth region is an indication that £ is slightly larger
than §, rather than being identically equal. A true no-
growth region is obtained when  &.t, = 2.45432
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Figure 6 Calculated cavity radius, R, transient creep rate, &,, and
sintering rate, §, as functions of time normalized by the character-
istic time, t., to attain the steady-state condition for £ 7, = 2.455:
(a) cavity radius normalized by cavity spacing, R/l; £, = 0.01; £,
= 0.01; .t./nl = 0.194.(b) &1, and st.. Lowering of £t leads to a
region of apparent zero cavity growth.

(Fig. 7) for which ¢, equals § when ¢ > f.. When & is
lowered still further to a value slightly less than s,
sintering occurs after an initial transient growth
period; this behaviour is illustrated in Fig. 8.

The results in Figs 5-8 demonstrate that the pre-
scribed value of the steady-state creep rate, &, plays a
significant role in the cavity growth kinetics even in
the transient growth regime. This occurs because &
scales &, and thus represents the minimum creep rate
that § must exceed in order to bring about cavity
shrinkage. The influence of &, on the cavity growth
behaviour is summarized in Fig. 9 which illustrates the
presence of a critical value of &g, &, that leads to a
no-growth behaviour. The value of €, is influenced by
the viscosity and surface energy, and they are related
by the expression

nle,,
Ys

which is obtained from Equation 12 by setting £ = 0.
As illustrated in Fig. 10, cavities exhibit continuous
growth when £ exceeds this critical value, but shrink
when the opposite is true. The calculated normalized
cavity size is presented against normalized time in
Fig. 11. This shows that the time to achieve a certain
value of R/l increases with decreasing values of £.t,. If
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Figure 7 Calculated cavity radius, R, transient creep rate, £,, and
sintering rate, §, as functions of time normalized by the character-
istic time, ¢, to attain the steady-state condition for &, = 2.45432:
(a) cavity radius normalized by cavity spacing, R/I; £, = 0.01; ¢,
= 0.01; y,t./nl = 0.01. (b) &,t. and st.. The balance between &, and
§ leads to a true zero cavity growth region.

a specific value of R/l is taken as a failure criterion, the
time to failure would increase with decreasing values
of £t in a similar manner.

5. Comparison of model and experiment
The volumetric growth rate, V,,, of spheroidal cavities
in the transient regime is

V., = 4nR*R
which becomes

33R*G(§)

V =
tr n

(& — 9) (16)
when combined with Equations 9, 11 and 14. A special
case of Equation 16 Is

- B i )

tr
which prevails when § is negligible. Since the steady-
state volumetric growth rate, V, is given by [7]
33R3G(E)é,

V, = 20 (18)
T
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Figure 8 Calculated cavity radius, R, transient creep rate, &,, and
sintering rate, §, as functions of time normalized by the character-
istic time, ¢, to attain the steady-state condition for &1, = 2.453:
(a) cavity radius normalized by cavity spacing, R/I &, = 0.01; ¢,
= 0.01; y,t./nl = 0.194. (b) £,,t, and st.. Reducing &, to a value less
than § leads to cavity shrinkage.
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Figure 9 Influence of the steady-state creep rate, &, on the cavity
growth kinetics. The value of &, must exceed a critical value, £,
( = 2.45432), in order to attain continuous cavity growth. £, = 0.01;
to = 0.01; y,r./nl = 0.194.

Equation 17 can be simplified to
Ve = Vali/1)" (19)

for representing the volumetric growth rate of creep
cavities subject to transient grain-boundary sliding,



TABLE II Summary of steady-state creep rate (&,,), cavity volumetric growth rate (¥), and cavity nucleation rate (#) as a

function of time of creep, ¢, observed in ceramics

Material T(°C) Compressive g.(s7h) V(em3s™1) #(Nuclei cm ™3 s)
stress(MPa)
AD993 1150 220 125x107 %8 1.60x 10717 ¢ 077 5.90 x 1010~ 0-8¢
AD993 1300 48 1.12x 1077 1.82 x 107167070 6.0x10%¢ 077
AD993 1300 26 416x1078 0 448 x 10° ¢~ 008
NC2033 1600 570 1.40x 1077 2.25%x 1071947037 0
NC2033 1600 605 280x1077 5.66x 107 19¢70-38 0
Lucalox? 1600 140 2.10%107% 0 3.13 x 108
Lucalox? 1600 140 8.10x 1077 0 3.13 %108
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Figure 10 Regions of I, cavity growth and II, cavity shrinkage
based on the proposed model. (—), zero cavity growth.
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Figure 11 Model calculations showing the time to reach a constant
ratio of cavity radius to spacing, R/l, increases with decreasing
values of &,t.. £, = 0.01; t, = 0.01; y,z./ml = 0.194.

A detailed examination of Equation 17 reveals that
the transient cavity growth rate should increase line-
arly with the steady-state creep rate, primarily
through Equation 9. A summary of the experimental
creep rate and cavity volumetric growth rate for cer-
amics studied by Page and co-workers [2, 3, 5] is
presented in Table II. For AD99 alumina crept at
1150 and 1300°C, a tenfold increase in V,, was ob-
served when the steady-state creep rate was increased
by approximately the same magnitude. Similarly, a

Time / characteristic time

Figure 12 Comparison of the theoretical and experimental volu-
metric cavity growth rates. SANS measurement [3,5] O, AD99; A,
NC203.

twofold increase in ¥, was observed in NC203 at
1600 °C when &, was increased by a factor of two.

Another important observation from the results in
Table II is that the cavity volumetric growth rate V
expressions are similar in form for ceramics both with
(AD99) and without (NC203) a grain-boundary
amorphous phase. This similarity in the V expression
appears to support the contention that Equations 9
and 19 can be used for describing, respectively, grain
boundary sliding and cavity growth in ceramics with
or without a glassy phase, providing that the appro-
priate characteristic time, ¢, is used.

A comparison of Equation 17 with experimental

data from AD99 alumina and NC203 silicon carbide is
shown in Fig. 12. The slope of the theoretical curve is
— 0.57, compared with the experimental values of
— 0.38 and — 0.77 for NC203 silicon carbide and
AD99 alumina, respectively. Despite the discrepancy,
the qualitative agreement implies that the cavity
growth transients observed in these ceramics originate
directly from transient grain-boundary sliding. It is
also instructive to note that Equation 19 is also applic-
able for the normal stress transient located at the
ligament between two cavities. This condition has
been analysed by Raj [8] using the Fourier series
approach. His results showed a similar time depend-
ence to that shown in Fig. 12 and represented by
Equation 19. The normal stress transient is, however,
thought not to be the mechanism responsible for
transient growth in these ceramics because its charac-
teristic time is much too short, as indicated above.

1657



100 —
8.0t o

6.0

nlg,
yS

4.0

2.0

0.0 R S o — |

Cavity radius/spacing, &

Figure 13 Comparison of the predicted (—) and experimentally
observed conditions for zero cavity growth: @, AD99, 1300°C; O,
Lucalox, 1600°C.

The zero-growth behaviour observed in these two
ceramics can also be explained on the basis of transi-
ent grain-boundary sliding when Equation 15 is in-
voked to account for sintering effects. A quantitative
comparison between model and experiment is shown
in Fig. 13. The viscosity parameter, 1, has been com-
puted on the basis of Equation 4, and diffusion data
compiled by Frost and Ashby [17]. For AD99 at
1300°C, hD, = 1x1072°m3sec™!, d = 20-37 pm,
R = 8.0 nm, and [ & 700 nm. For Lucalox at 1600 °C,
hD, ~27x10"*'m*s™!, d=37pum, R=62nm,
and ! ~ 700 nm. The surface energy, v, is taken to be
1 Jm™2, and the values for & are given in Table II.
The viscosity parameter depends on the grain size; as a
result, a range of values for ng,l/v, is given for AD99
in Fig. 13. The comparison in this figure indicates fair
agreement between theory and experiment.

At first glance, the zero cavity growth condition
achieved through dynamic equilibrium of Equation 12
appeared to be rather difficult to obtain because a
slight increase in the strain rate would lead to cavity
growth, while a slight decrease would cause cavity
sintering. However, a more detailed examination of
the cavity growth process under constrained condi-
tions suggested otherwise. In constrained cavitation,
the local total strain rate, £,, is given by

E.':l = égbs + éc + én + ég (20)

where &, + & + &, + £, are strain rates contributed
by grain-boundary sliding, creep, cavity nucleation
and growth, respectively. The initial values for £, and
¢, were both zero prior to cavity nucleation and
growth, but were of finite values after cavitation. Since
the total strain rate for the cavitated region was con-
trolled by the uncavitated surrounding matrix grains,
‘any contribution to the local strain rate by cavity
nucleation and growth in the cavitated region would
lead to reductions in the amount of grain-boundary
sliding and/or creep. A reduction in the grain-bound-
ary sliding rate would slow or even arrest the growth
of the cavities. The latter occurs when the cavity
growth term intersected the sintering curve in a man-
ner as shown in Fig. 7b. These cavities would not be
sintered, however, because of continual grain-bound-
ary sliding. A negative contribution by £, or &, due to
sintering would lead to an increase in £g,; this would
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lead to cavity growth and restore the cavities to their
no-growth configuration. Under these circumstances,
cavitation would occur by continuous nucleation of
cavities which would not grow beyond a given size.
This process would proceed until cavities are nu-
cleated at neighbouring boundaries, and cavitation
would then proceed in an unconstrained manner. This
proposed cavitation process is consistent with the
results shown in Table I, which indicates that cavity
nucleation is the dominant mechanism when zero
cavity growth is observed.

6. Conclusions

1. The transient cavity growth observed in ceramics
under compressive loading is probably induced by
transient grain-boundary sliding.

2. Zero cavity growth prevails in ceramics under
compression when the local tensile stress induced by
grain-boundary sliding is balanced by the sintering
term. The condition of zero cavity growth occurs at a
critical value of the steady-state creep rate.

3. There exists a critical value, &, of the steady-
state creep rate which must be exceeded in order for
continuous cavity growth to occur. The value of &,
depends on grain-boundary viscosity, surface energy,
cavity size and spacing.
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